

Greetings!!

Dear students in this notes we are going to learn about “OPERATIONS ON MATRICES”

Addition and subtraction of matrices

Two matrices can be added or subtracted if they have the same order. To add or subtract two matrices, simply add or subtract the corresponding elements.

For example,
$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} + \begin{pmatrix} g & h & i \\ j & k & l \end{pmatrix} = \begin{pmatrix} a+g & b+h & c+i \\ d+j & e+k & f+l \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a-e & b-f \\ c-g & d-h \end{pmatrix}$$

If $A = (a_{ij})$, $B = (b_{ij})$, $i = 1, 2, \dots, m$, $j = 1, 2, \dots, n$ then $C = A + B$ is such that $C = (c_{ij})$ where $c_{ij} = a_{ij} + b_{ij}$ for all $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$

Now we are going to do the example sums,

Example 3.60 If $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix}$, find $A+B$.

Solution $A+B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} + \begin{pmatrix} 1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1+1 & 2+7 & 3+0 \\ 4+1 & 5+3 & 6+1 \\ 7+2 & 8+4 & 9+0 \end{pmatrix} = \begin{pmatrix} 2 & 9 & 3 \\ 5 & 8 & 7 \\ 9 & 12 & 9 \end{pmatrix}$

Example 3.63 If $A = \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$ then Find $2A+B$.

Solution Since A and B have same order 3×3 , $2A+B$ is defined.

$$\begin{aligned} \text{We have } 2A+B &= 2 \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{pmatrix} + \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix} = \begin{pmatrix} 14 & 16 & 12 \\ 2 & 6 & 18 \\ -8 & 6 & -2 \end{pmatrix} + \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 18 & 27 & 9 \\ 1 & 8 & 22 \\ -1 & 11 & -2 \end{pmatrix} \end{aligned}$$

Example 3.61 Two examinations were conducted for three groups of students namely group 1, group 2, group 3 and their data on average of marks for the subjects Tamil, English, Science and Mathematics are given below in the form of matrices A and B . Find the total marks of both the examinations for all the three groups.

$$A = \begin{matrix} \begin{array}{cccc} \text{Tamil} & \text{English} & \text{Science} & \text{Mathematics} \end{array} \\ \begin{array}{c} \text{Group1} \\ \text{Group2} \\ \text{Group3} \end{array} \end{matrix} \begin{pmatrix} 22 & 15 & 14 & 23 \\ 50 & 62 & 21 & 30 \\ 53 & 80 & 32 & 40 \end{pmatrix}$$

$$B = \begin{matrix} \begin{array}{cccc} \text{Tamil} & \text{English} & \text{Science} & \text{Mathematics} \end{array} \\ \begin{array}{c} \text{Group1} \\ \text{Group2} \\ \text{Group3} \end{array} \end{matrix} \begin{pmatrix} 20 & 38 & 15 & 40 \\ 18 & 12 & 17 & 80 \\ 81 & 47 & 52 & 18 \end{pmatrix}$$

Solution The total marks in both the examinations for all the three groups is the sum of the given matrices.

$$A + B = \begin{pmatrix} 22 + 20 & 15 + 38 & 14 + 15 & 23 + 40 \\ 50 + 18 & 62 + 12 & 21 + 17 & 30 + 80 \\ 53 + 81 & 80 + 47 & 32 + 52 & 40 + 18 \end{pmatrix} = \begin{pmatrix} 42 & 53 & 29 & 63 \\ 68 & 74 & 38 & 110 \\ 134 & 127 & 84 & 58 \end{pmatrix}$$

Example 3.62 If $A = \begin{pmatrix} 1 & 3 & -2 \\ 5 & -4 & 6 \\ -3 & 2 & 9 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 8 \\ 3 & 4 \\ 9 & 6 \end{pmatrix}$, find $A+B$.

Solution It is not possible to add A and B because they have different orders.

Multiplication of Matrix by a Scalar

We can multiply the elements of the given matrix A by a non-zero number k to obtain a new matrix kA whose elements are multiplied by k . The matrix kA is called scalar multiplication of A .

Example 3.64 If $A = \begin{pmatrix} 5 & 4 & -2 \\ \frac{1}{2} & \frac{3}{4} & \sqrt{2} \\ 2 & 4 & 1 \\ 1 & 9 & 4 \end{pmatrix}$, $B = \begin{pmatrix} -7 & 4 & -3 \\ \frac{1}{4} & \frac{7}{2} & 3 \\ 5 & -6 & 9 \end{pmatrix}$, find $4A - 3B$.

Solution Since A , B are of the same order 3×3 , subtraction of $4A$ and $3B$ is defined.

$$\begin{aligned}
 4A - 3B &= 4 \begin{pmatrix} 5 & 4 & -2 \\ \frac{1}{2} & \frac{3}{4} & \sqrt{2} \\ 2 & 4 & 1 \\ 1 & 9 & 4 \end{pmatrix} - 3 \begin{pmatrix} -7 & 4 & -3 \\ \frac{1}{4} & \frac{7}{2} & 3 \\ 5 & -6 & 9 \end{pmatrix} \\
 &= \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix} + \begin{pmatrix} 21 & -12 & 9 \\ -\frac{3}{4} & -\frac{21}{2} & -9 \\ -15 & 18 & -27 \end{pmatrix} \\
 &= \begin{pmatrix} 41 & 4 & 1 \\ \frac{5}{4} & -\frac{15}{2} & 4\sqrt{2} - 9 \\ -11 & 54 & -11 \end{pmatrix}
 \end{aligned}$$

Properties of Matrix Addition and Scalar Multiplication

Let A , B , C be $m \times n$ matrices and p and q be two non-zero scalars (numbers). Then we have the following properties.

- (i) $A + B = B + A$ [Commutative property of matrix addition]
- (ii) $A + (B + C) = (A + B) + C$ [Associative property of matrix addition]
- (iii) $(pq)A = p(qA)$ [Associative property of scalar multiplication]
- (iv) $IA = A$ [Scalar Identity property where I is the unit matrix]
- (v) $p(A + B) = pA + pB$ [Distributive property of scalar and two matrices]
- (vi) $(p + q)A = pA + qA$ [Distributive property of two scalars with a matrix]

Additive Identity

The null matrix or zero matrix is the **identity** for matrix addition.

Let A be any matrix.

Then, $A + O = O + A = A$ where O is the null matrix or zero matrix of same order as that of A .

Additive Inverse

If A be any given matrix then $-A$ is the **additive inverse** of A .

In fact we have $A + (-A) = (-A) + A = O$

Example 3.65 Find the value of a , b , c , d from the following matrix equation.

$$\begin{pmatrix} d & 8 \\ 3b & a \end{pmatrix} + \begin{pmatrix} 3 & a \\ -2 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 2a \\ b & 4c \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix}$$

Solution

First, we add the two matrices on both left, right hand sides to get

$$\begin{pmatrix} d+3 & 8+a \\ 3b-2 & a-4 \end{pmatrix} = \begin{pmatrix} 2 & 2a+1 \\ b-5 & 4c \end{pmatrix}$$

Equating the corresponding elements of the two matrices, we have

$$d+3=2 \Rightarrow d=-1$$

$$8+a=2a+1 \Rightarrow a=7$$

$$3b-2=b-5 \Rightarrow b=\frac{-3}{2}$$

Substituting $a=7$ in $a-4=4c \Rightarrow c=\frac{3}{4}$

Therefore, $a=7$, $b=-\frac{3}{2}$, $c=\frac{3}{4}$, $d=-1$.

Example 3.66 If $A = \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3 \end{pmatrix}$

compute the following : (i) $3A + 2B - C$ (ii) $\frac{1}{2}A - \frac{3}{2}B$

$$\begin{aligned} \text{Solution} \quad \text{(i)} \quad 3A + 2B - C &= 3 \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{pmatrix} + 2 \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{pmatrix} - \begin{pmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3 \end{pmatrix} \\ &= \begin{pmatrix} 3 & 24 & 9 \\ 9 & 15 & 0 \\ 24 & 21 & 18 \end{pmatrix} + \begin{pmatrix} 16 & -12 & -8 \\ 4 & 22 & -6 \\ 0 & 2 & 10 \end{pmatrix} + \begin{pmatrix} -5 & -3 & 0 \\ 1 & 7 & -2 \\ -1 & -4 & -3 \end{pmatrix} \\ &= \begin{pmatrix} 14 & 9 & 1 \\ 14 & 44 & -8 \\ 23 & 19 & 25 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} \text{(ii)} \quad \frac{1}{2}A - \frac{3}{2}B &= \frac{1}{2}(A - 3B) \\ &= \frac{1}{2} \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{pmatrix} - 3 \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{pmatrix} + \begin{pmatrix} -24 & 18 & 12 \\ -6 & -33 & 9 \\ 0 & -3 & -15 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -23 & 26 & 15 \\ -3 & -28 & 9 \\ 8 & 4 & -9 \end{pmatrix} \\ &= \begin{pmatrix} -\frac{23}{2} & 13 & \frac{15}{2} \\ -\frac{3}{2} & -14 & \frac{9}{2} \\ 4 & 2 & -\frac{9}{2} \end{pmatrix} \end{aligned}$$